Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
EFSA J ; 21(2): e07822, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2274202

ABSTRACT

The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.

2.
Eur J Wildl Res ; 69(2): 33, 2023.
Article in English | MEDLINE | ID: covidwho-2253820

ABSTRACT

Data on SARS-CoV-2 infection in wildlife species is limited. The high prevalences found in mustelid species such as free-ranging American minks (Neovison vison) and domestic ferrets (Mustela putorius furo) justify the study of this virus in the closely related autochthonous free-ranging European polecat (Mustela putorius). We analysed lung samples from 48 roadkilled polecats collected when the human infection reached its highest levels in Spain (2020-2021). We did not detect infections by SARS-CoV-2; however, surveillance in wild carnivores and particularly in mustelids is still warranted, due to their susceptibility to this virus.

3.
Eur J Immunol ; 53(4): e2250206, 2023 04.
Article in English | MEDLINE | ID: covidwho-2208972

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a challenge for biomedicine and public health. To advance the development of effective diagnostic, prognostic, and preventive interventions, our study focused on high-throughput antibody binding epitope mapping of the SARS-CoV-2 spike RBD protein by IgA, IgM and IgG antibodies in saliva and sera of different cohorts from healthy uninfected individuals to SARS-CoV-2-infected unvaccinated and vaccinated asymptomatic, recovered, nonsevere, and severe patients. Identified candidate diagnostic (455-LFRKSNLKPFERD-467), prognostic (395-VYADSFVIRGDEV-407-C-KLH, 332-ITNLCPFGEV-342-C-KLH, 352-AWNRKRI-358-C-KLH, 524-VCGPKKSTNLVKN-536-KLH), and protective (MKLLE-487-NCYFPLQSYGFQPTNGVG-504-GGGGS-446-GGNYNYLYRLFRKSNLKPFERD-467) epitopes were validated with sera from prevaccine and postvaccine cohorts. The results identified neutralizing epitopes and support that antibody recognition of linear B-cell epitopes in RBD protein is associated with antibody isotype and disease symptomatology. The findings in asymptomatic individuals suggest a role for anti-RBD antibodies in the protective response against SARS-CoV-2. The possibility of translating results into diagnostic interventions for the early diagnosis of asymptomatic individuals and prognosis of disease severity provides new tools for COVID-19 surveillance and evaluation of risks in hospitalized patients. These results, together with other approaches, may contribute to the development of new vaccines for the control of COVID-19 and other coronavirus-related diseases using a quantum vaccinomics approach through the combination of protective epitopes.


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Epitope Mapping , Epitopes, B-Lymphocyte , SARS-CoV-2
4.
J Funct Foods ; 101: 105412, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2180495

ABSTRACT

The aim of this study was to characterize serum protein biomarkers for nutritional status that may be used as predictors for disease symptomatology in COVID-19 patients before and after vaccination. In pre-vaccine cohorts, proteomics analysis revealed significant differences between groups, with serum proteins alpha-1-acid glycoproteins (AGPs) 1 and 2, C-reactive protein (CRP) and retinol binding protein (RBP) increasing with COVID-19 severity, in contrast with serum albumin, transthyretin (TTR) and serotransferrin (TF) reduction as the symptomatology increased. Immunoassay reproduced and validated proteomics results of serum proteins albumin and RBP. In post-vaccine cohorts, the results showed the same pattern as in pre-vaccine cohorts for serum proteins AGPs, CRP, albumin and TTR. However, TF levels were similar between groups and RBP presented a slight reduction as COVID-19 symptomatology increased. In these cohorts, immunoassay validated proteomics results of serum proteins albumin, TTR and TF. Additionally, immune response to α-Gal in pre-vaccine cohorts varied in predominant immunoglobulin type profile, while post-vaccine groups presented mainly anti-α-Gal protective IgG antibodies. The study identified serum nutritional biomarkers that could potentially predict an accurate prognostic of COVID-19 disease to provide an appropriate nutritional care and guidance in non-vaccinated and vaccinated individuals against SARS-CoV-2. These results highlight the importance of designing personalized nutrition protocols to improve diet along with the application of prebiotics or probiotics for the control of COVID-19 and other infectious diseases.

5.
Indoor Air ; 32(9): e13109, 2022 09.
Article in English | MEDLINE | ID: covidwho-2042835

ABSTRACT

Studies about the identification of SARS-CoV-2 in indoor aerosols have been conducted in hospital patient rooms and to a lesser extent in nonhealthcare environments. In these studies, people were already infected with SARS-CoV-2. However, in the present study, we investigated the presence of SARS-CoV-2 in HEPA filters housed in portable air cleaners (PACs) located in places with apparently healthy people to prevent possible outbreaks. A method for detecting the presence of SARS-CoV-2 RNA in HEPA filters was developed and validated. The study was conducted for 13 weeks in three indoor environments: school, nursery, and a household of a social health center, all in Ciudad Real, Spain. The environmental monitoring of the presence of SARS-CoV-2 was conducted in HEPA filters and other surfaces of these indoor spaces for a selective screening in asymptomatic population groups. The objective was to limit outbreaks at an early stage. One HEPA filter tested positive in the social health center. After analysis by RT-PCR of SARS-CoV-2 in residents and healthcare workers, one worker tested positive. Therefore, this study provides direct evidence of virus-containing aerosols trapped in HEPA filters and the possibility of using these PACs for environmental monitoring of SARS-CoV-2 while they remove airborne aerosols and trap the virus.


Subject(s)
Air Filters , Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/prevention & control , Humans , RNA, Viral , Respiratory Aerosols and Droplets , SARS-CoV-2
6.
Molecules ; 27(18)2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2033065

ABSTRACT

In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.


Subject(s)
COVID-19 , Hypersensitivity , Viral Vaccines , Autoantibodies , COVID-19/prevention & control , Epitopes , Humans , Proteomics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
7.
Sci Total Environ ; 844: 157241, 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2004484

ABSTRACT

Air pollution and associated particulate matter (PM) affect environmental and human health worldwide. The intense vehicle usage and the high population density in urban areas are the main causes of this public health impact. Epidemiological studies have provided evidence on the effect of air pollution on airborne SARS-CoV-2 transmission and COVID-19 disease prevalence and symptomatology. However, the causal relationship between air pollution and COVID-19 is still under investigation. Based on these results, the question addressed in this study was how long SARS-CoV-2 survives on the surface of PM from different origin to evaluate the relationship between fuel and atmospheric pollution and virus transmission risk. The persistence and viability of SARS-CoV-2 virus was characterized in 5 engine exhaust PM and 4 samples of atmospheric PM10. The results showed that SARS-CoV-2 remains on the surface of PM10 from air pollutants but interaction with engine exhaust PM inactivates the virus. Consequently, atmospheric PM10 levels may increase SARS-CoV-2 transmission risk thus supporting a causal relationship between these factors. Furthermore, the relationship of pollution PM and particularly engine exhaust PM with virus transmission risk and COVID-19 is also affected by the impact of these pollutants on host oxidative stress and immunity. Therefore, although fuel PM inactivates SARS-CoV-2, the conclusion of the study is that both atmospheric and engine exhaust PM negatively impact human health with implications for COVID-19 and other diseases.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Humans , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions
8.
Innovation (Camb) ; 2(3): 100126, 2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1665533
9.
Transbound Emerg Dis ; 68(6): 3114-3119, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1526431

ABSTRACT

Current results do not provide conclusive evidence on the effect of BCG vaccination on COVID-19 alone or in combination with other factors. To address this limitation, in this study we used a citizen science initiative on the COVID-19 pandemic to collect data worldwide during 2 October 2020-30 October 2020 (1,233 individuals) in a structured way for analysing factors and characteristics of affected individuals in relation to BCG vaccination. For the first time, the results of our study suggested that vaccination with BCG may increase the risk for COVID-19 at certain age, particularly in individuals vaccinated at childhood. Childhood BCG vaccination increased the likelihood of being diagnosed with COVID-19 fivefold in COVID-19 low-incidence countries and threefold in high-incidence countries. A reasonable explanation for this effect is the activation of certain innate immunity mechanisms associated with inflammatory reactions. These factors should be considered when analysing the risks associated with this global pandemic.


Subject(s)
COVID-19 , Citizen Science , Animals , BCG Vaccine , COVID-19/veterinary , Child , Pandemics , Risk Factors , SARS-CoV-2 , Vaccination/veterinary
10.
Front Immunol ; 12: 730710, 2021.
Article in English | MEDLINE | ID: covidwho-1441108

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 challenges the understanding of factors affecting disease progression and severity. The identification of prognostic biomarkers and physiological processes associated with disease symptoms is relevant for the development of new diagnostic and therapeutic interventions to contribute to the control of this pandemic. To address this challenge, in this study, we used a quantitative proteomics together with multiple data analysis algorithms to characterize serum protein profiles in five cohorts from healthy to SARS-CoV-2-infected recovered (hospital discharge), nonsevere (hospitalized), and severe [at the intensive care unit (ICU)] cases with increasing systemic inflammation in comparison with healthy individuals sampled prior to the COVID-19 pandemic. The results showed significantly dysregulated proteins and associated biological processes and disorders associated to COVID-19. These results corroborated previous findings in COVID-19 studies and highlighted how the representation of dysregulated serum proteins and associated BPs increases with COVID-19 disease symptomatology from asymptomatic to severe cases. The analysis was then focused on novel disease processes and biomarkers that were correlated with disease symptomatology. To contribute to translational medicine, results corroborated the predictive value of selected immune-related biomarkers for disease recovery [Selenoprotein P (SELENOP) and Serum paraoxonase/arylesterase 1 (PON1)], severity [Carboxypeptidase B2 (CBP2)], and symptomatology [Pregnancy zone protein (PZP)] using protein-specific ELISA tests. Our results contributed to the characterization of SARS-CoV-2-host molecular interactions with potential contributions to the monitoring and control of this pandemic by using immune-related biomarkers associated with disease symptomatology.


Subject(s)
COVID-19/blood , COVID-19/immunology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Aryldialkylphosphatase/blood , Biomarkers/blood , Carboxypeptidase B2/blood , Female , Humans , Interleukin-1/blood , Interleukin-4/blood , Male , Middle Aged , Pregnancy Proteins/blood , Prognosis , Proteome/analysis , Proteomics , Retrospective Studies , Selenoprotein P/blood
11.
Front Biosci (Landmark Ed) ; 26(8): 379-386, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1378532

ABSTRACT

Background: The world faces the challenge posed by the interaction between hosts and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) with potential role for arthropod vectors, and the effect of SARS-CoV-2 variants on acquired immunity, vaccine efficacy and coronavirus disease-19 (COVID-19) pandemic control. Proposal: The characterization of the role played by animal hosts and host-virus interactions is essential to address this challenge. Zoonotic (animal-to-human) and reverse zoonotic (human-to-animal) routes may be involved in virus transmission with a possible still unconfirmed role for arthropod vectors. Herein we propose to consider the risks posed by the possible role of arthropod vectors in COVID-19 and that immunity against SARS-CoV-2 may increase the risk for zoonotic virus transmission. These risks should be considered when evaluating vaccine efficacy and monitoring animal SARS-CoV-2 variants. Conclusion: Virus surveillance, epidemiology, sequencing and evaluation of susceptibility to antibodies and other protective immune mechanisms from vaccinated individuals should be improved. A One Health approach such as the one applied by our group SaBio is necessary for a more effective control of COVID-19 and prevention of future pandemics.


Subject(s)
Arthropod Vectors , COVID-19/transmission , Animals , COVID-19/virology , Host-Parasite Interactions , Humans , SARS-CoV-2/isolation & purification , Zoonoses
12.
Mathematics ; 9(9):1007, 2021.
Article in English | ProQuest Central | ID: covidwho-1237365

ABSTRACT

We extend the classical compartmental frameworks for susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) systems to include an exposed/latent class or a chronic class of infection. Using a suite of stochastic continuous-time Markov chain models we examine the impact of latent and chronic infection on the mean time to extinction of the infection. Our findings indicate that the mean time to pathogen extinction is increased for infectious diseases which cause exposed/latent infection prior to full infection and that the extinction time is increased further if these exposed individuals are also capable of transmitting the infection. A chronic infection stage can decrease or increase the mean time to pathogen extinction and in particular this depends on whether chronically infected individuals incur disease-induced mortality and whether they are able to transmit the infection. We relate our findings to specific infectious diseases that exhibit latent and chronic infectious stages and argue that infectious diseases with these characteristics may be more difficult to manage and control.

13.
Emerg Infect Dis ; 27(7): 1994-1996, 2021 07.
Article in English | MEDLINE | ID: covidwho-1278361

ABSTRACT

We found severe acute respiratory syndrome coronavirus 2 RNA in 6 (8.4%) of 71 ferrets in central Spain and isolated and sequenced virus from 1 oral and 1 rectal swab specimen. Natural infection occurs in kept ferrets when virus circulation among humans is high. However, small ferret collections probably cannot maintain virus circulation.


Subject(s)
COVID-19 , Ferrets , Animals , Humans , SARS-CoV-2 , Spain/epidemiology
14.
J Med Virol ; 93(4): 2065-2075, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217368

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. Characterization of the immunological mechanisms involved in disease symptomatology and protective response is important to progress in disease control and prevention. Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galß1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response against pathogenic viruses and other microorganisms containing this modification on membrane proteins mediated by anti-α-Gal immunoglobulin M (IgM)/IgG antibodies produced in response to bacterial microbiota. In addition to anti-α-Gal antibody-mediated pathogen opsonization, this glycan induces various immune mechanisms that have shown protection in animal models against infectious diseases without inflammatory responses. In this study, we hypothesized that the immune response to α-Gal may contribute to the control of COVID-19. To address this hypothesis, we characterized the antibody response to α-Gal in patients at different stages of COVID-19 and in comparison with healthy control individuals. The results showed that while the inflammatory response and the anti-SARS-CoV-2 (Spike) IgG antibody titers increased, reduction in anti-α-Gal IgE, IgM, and IgG antibody titers and alteration of anti-α-Gal antibody isotype composition correlated with COVID-19 severity. The results suggested that the inhibition of the α-Gal-induced immune response may translate into more aggressive viremia and severe disease inflammatory symptoms. These results support the proposal of developing interventions such as probiotics based on commensal bacteria with α-Gal epitopes to modify the microbiota and increase α-Gal-induced protective immune response and reduce severity of COVID-19.


Subject(s)
Antibodies, Viral/analysis , COVID-19/immunology , Disaccharides/immunology , Immunity, Humoral , Aged , Aged, 80 and over , Antibodies, Bacterial/analysis , COVID-19/diagnosis , Epitopes/immunology , Female , Humans , Immunoglobulin G/analysis , Male , Microbiota/immunology , Middle Aged , Severity of Illness Index , Spain
15.
Vet Q ; 41(1): 181-201, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1202174

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.


Subject(s)
Animals, Domestic , Animals, Wild , COVID-19/veterinary , Disease Reservoirs/veterinary , Public Health , SARS-CoV-2 , Animals , Animals, Zoo , COVID-19/epidemiology , COVID-19/transmission , Humans
16.
Viruses ; 13(4)2021 04 19.
Article in English | MEDLINE | ID: covidwho-1194711

ABSTRACT

Coronavirus-like organisms have been previously identified in Arthropod ectoparasites (such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we performed in silico structural and binding energy calculations to assess the risks associated with possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on complex stability. For several species (e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our structural analyses also provide structural rationale for interactions between the viral Spike and the ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a possible role in passive transmission of the virus to their human hosts.


Subject(s)
Arthropod Proteins/metabolism , Arthropods/metabolism , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropods/chemistry , Arthropods/classification , Arthropods/genetics , Binding Sites , COVID-19/transmission , Ectoparasitic Infestations/parasitology , Humans , Models, Molecular , Mutation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Phylogeny , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Sequence Homology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
17.
EFSA J ; 19(3): e06459, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1115388

ABSTRACT

American mink and ferret are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but no information is available for other mustelid species. SARS-CoV-2 spreads very efficiently within mink farms once introduced, by direct and indirect contact, high within-farm animal density increases the chance for transmission. Between-farm spread is likely to occur once SARS-CoV-2 is introduced, short distance between SARS-CoV-2 positive farms is a risk factor. As of 29 January 2021, SARS-CoV-2 virus has been reported in 400 mink farms in eight countries in the European Union. In most cases, the likely introduction of SARS-CoV-2 infection into farms was infected humans. Human health can be at risk by mink-related variant viruses, which can establish circulation in the community, but so far these have not shown to be more transmissible or causing more severe impact compared with other circulating SARS-CoV-2. Concerning animal health risk posed by SARS-CoV-2 infection the animal species that may be included in monitoring plans are American mink, ferrets, cats, raccoon dogs, white-tailed deer and Rhinolophidae bats. All mink farms should be considered at risk of infection; therefore, the monitoring objective should be early detection. This includes passive monitoring (in place in the whole territory of all countries where animals susceptible to SARS-CoV-2 are bred) but also active monitoring by regular testing. First, frequent testing of farm personnel and all people in contact with the animals is recommended. Furthermore randomly selected animals (dead or sick animals should be included) should be tested using reverse transcriptase-polymerase chain reaction (RT-PCR), ideally at weekly intervals (i.e. design prevalence approximately 5% in each epidemiological unit, to be assessed case by case). Suspected animals (dead or with clinical signs and a minimum five animals) should be tested for confirmation of SARS-CoV-2 infection. Positive samples from each farm should be sequenced to monitor virus evolution and results publicly shared.

20.
Transbound Emerg Dis ; 68(3): 1487-1492, 2021 May.
Article in English | MEDLINE | ID: covidwho-745690

ABSTRACT

Since March 2020, Spain (along with many other countries) has been severely affected by the ongoing coronavirus disease 19 (COVID-19) pandemic caused by the rapid spread of a new virus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2). As part of global efforts to improve disease surveillance, we investigated how readily SARS-CoV-2 RNA could be detected in environmental samples collected from an isolated rural community in Spain with a high COVID-19 prevalence (6% of the population of 883 inhabitants). The first diagnosis of COVID-19-compatible symptoms in the village was recorded on 3 March 2020, and the last known active case resolved on 5 June 2020. By 15 May, two months after strict movement constraints were imposed ('lockdown'), and the cumulative number of symptomatic cases had increased to 53. Of those cases, 22 (41%) had been tested and confirmed by RT-PCR. On 13 May and 5 June, samples were collected from high-use surfaces and clothes in the homes of 13 confirmed cases, from surfaces in nine public service sites (e.g. supermarket and petrol station) and from the wastewater of the village sewage system. SARS-CoV-2 RNA was detected in 7 of 57 (12%) samples, including three households and three public sites. While there is not yet sufficient evidence to recommend environmental surveillance as a standard approach for COVID-19 epidemiology, environmental surveillance research may contribute to advance knowledge about COVID-19 by further elucidating virus shedding dynamics and environmental contamination, including the potential identification of animal reservoirs.


Subject(s)
COVID-19/epidemiology , Environmental Microbiology , Environmental Monitoring , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Animals , COVID-19/virology , Communicable Disease Control , Humans , Prevalence , SARS-CoV-2/genetics , Spain/epidemiology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL